Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Proteome Res ; 19(12): 4844-4856, 2020 12 04.
Article in English | MEDLINE | ID: covidwho-1387125

ABSTRACT

Despite considerable research progress on SARS-CoV-2, the direct zoonotic origin (intermediate host) of the virus remains ambiguous. The most definitive approach to identify the intermediate host would be the detection of SARS-CoV-2-like coronaviruses in wild animals. However, due to the high number of animal species, it is not feasible to screen all the species in the laboratory. Given that binding to ACE2 proteins is the first step for the coronaviruses to invade host cells, we propose a computational pipeline to identify potential intermediate hosts of SARS-CoV-2 by modeling the binding affinity between the Spike receptor-binding domain (RBD) and host ACE2. Using this pipeline, we systematically examined 285 ACE2 variants from mammals, birds, fish, reptiles, and amphibians, and found that the binding energies calculated for the modeled Spike-RBD/ACE2 complex structures correlated closely with the effectiveness of animal infection as determined by multiple experimental data sets. Built on the optimized binding affinity cutoff, we suggest a set of 96 mammals, including 48 experimentally investigated ones, which are permissive to SARS-CoV-2, with candidates from primates, rodents, and carnivores at the highest risk of infection. Overall, this work not only suggests a limited range of potential intermediate SARS-CoV-2 hosts for further experimental investigation, but also, more importantly, it proposes a new structure-based approach to general zoonotic origin and susceptibility analyses that are critical for human infectious disease control and wildlife protection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Binding Sites/genetics , COVID-19/pathology , COVID-19/virology , Host-Pathogen Interactions/genetics , Humans , Mammals/genetics , Mammals/virology , Pandemics , Protein Binding/genetics , Protein Domains/genetics , SARS-CoV-2/pathogenicity , Viral Zoonoses/genetics , Viral Zoonoses/virology
2.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1288905

ABSTRACT

Positively charged groups that mimic arginine or lysine in a natural substrate of trypsin are necessary for drugs to inhibit the trypsin-like serine protease TMPRSS2 that is involved in the viral entry and spread of coronaviruses, including SARS-CoV-2. Based on this assumption, we identified a set of 13 approved or clinically investigational drugs with positively charged guanidinobenzoyl and/or aminidinobenzoyl groups, including the experimentally verified TMPRSS2 inhibitors Camostat and Nafamostat. Molecular docking using the C-I-TASSER-predicted TMPRSS2 catalytic domain model suggested that the guanidinobenzoyl or aminidinobenzoyl group in all the drugs could form putative salt bridge interactions with the side-chain carboxyl group of Asp435 located in the S1 pocket of TMPRSS2. Molecular dynamics simulations further revealed the high stability of the putative salt bridge interactions over long-time (100 ns) simulations. The molecular mechanics/generalized Born surface area-binding free energy assessment and per-residue energy decomposition analysis also supported the strong binding interactions between TMPRSS2 and the proposed drugs. These results suggest that the proposed compounds, in addition to Camostat and Nafamostat, could be effective TMPRSS2 inhibitors for COVID-19 treatment by occupying the S1 pocket with the hallmark positively charged groups.


Subject(s)
Antiviral Agents/chemistry , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Benzamidines/chemistry , Benzamidines/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Esters/chemistry , Esters/metabolism , Guanidines/chemistry , Guanidines/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Serine Endopeptidases/chemistry , Serine Proteinase Inhibitors/metabolism , Serine Proteinase Inhibitors/therapeutic use , Thermodynamics , COVID-19 Drug Treatment
3.
Cell Rep Methods ; 1(3)2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1275250

ABSTRACT

Structure prediction for proteins lacking homologous templates in the Protein Data Bank (PDB) remains a significant unsolved problem. We developed a protocol, C-I-TASSER, to integrate interresidue contact maps from deep neural-network learning with the cutting-edge I-TASSER fragment assembly simulations. Large-scale benchmark tests showed that C-I-TASSER can fold more than twice the number of non-homologous proteins than the I-TASSER, which does not use contacts. When applied to a folding experiment on 8,266 unsolved Pfam families, C-I-TASSER successfully folded 4,162 domain families, including 504 folds that are not found in the PDB. Furthermore, it created correct folds for 85% of proteins in the SARS-CoV-2 genome, despite the quick mutation rate of the virus and sparse sequence profiles. The results demonstrated the critical importance of coupling whole-genome and metagenome-based evolutionary information with optimal structure assembly simulations for solving the problem of non-homologous protein structure prediction.

4.
Comput Struct Biotechnol J ; 19: 518-529, 2021.
Article in English | MEDLINE | ID: covidwho-1002467

ABSTRACT

The development of effective and safe vaccines is the ultimate way to efficiently stop the ongoing COVID-19 pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Built on the fact that SARS-CoV-2 utilizes the association of its Spike (S) protein with the human angiotensin-converting enzyme 2 (ACE2) receptor to invade host cells, we computationally redesigned the S protein sequence to improve its immunogenicity and antigenicity. Toward this purpose, we extended an evolutionary protein design algorithm, EvoDesign, to create thousands of stable S protein variants that perturb the core protein sequence but keep the surface conformation and B cell epitopes. The T cell epitope content and similarity scores of the perturbed sequences were calculated and evaluated. Out of 22,914 designs with favorable stability energy, 301 candidates contained at least two pre-existing immunity-related epitopes and had promising immunogenic potential. The benchmark tests showed that, although the epitope restraints were not included in the scoring function of EvoDesign, the top S protein design successfully recovered 31 out of the 32 major histocompatibility complex (MHC)-II T cell promiscuous epitopes in the native S protein, where two epitopes were present in all seven human coronaviruses. Moreover, the newly designed S protein introduced nine new MHC-II T cell promiscuous epitopes that do not exist in the wildtype SARS-CoV-2. These results demonstrated a new and effective avenue to enhance a target protein's immunogenicity using rational protein design, which could be applied for new vaccine design against COVID-19 and other pathogens.

5.
Aging (Albany NY) ; 12(12): 11263-11276, 2020 06 16.
Article in English | MEDLINE | ID: covidwho-601536

ABSTRACT

The outbreak of COVID-19 has now become a global pandemic that has severely impacted lives and economic stability. There is, however, no effective antiviral drug that can be used to treat COVID-19 to date. Built on the fact that SARS-CoV-2 initiates its entry into human cells by the receptor binding domain (RBD) of its spike protein binding to the angiotensin-converting enzyme 2 (hACE2), we extended a recently developed approach, EvoDesign, to design multiple peptide sequences that can competitively bind to the SARS-CoV-2 RBD to inhibit the virus from entering human cells. The protocol starts with the construction of a hybrid peptidic scaffold by linking two fragments grafted from the interface of the hACE2 protein (a.a. 22-44 and 351-357) with a linker glycine, which is followed by the redesign and refinement simulations of the peptide sequence to optimize its binding affinity to the interface of the SARS-CoV-2 RBD. The binding experiment analyses showed that the designed peptides exhibited a significantly stronger binding potency to hACE2 than the wild-type hACE2 receptor (with -53.35 vs. -46.46 EvoEF2 energy unit scores for the top designed and wild-type peptides, respectively). This study demonstrates a new avenue to utilize computationally designed peptide motifs to treat the COVID-19 disease by blocking the critical spike-RBD and hACE2 interactions.


Subject(s)
Coronavirus Infections/drug therapy , Peptides/chemical synthesis , Peptides/pharmacology , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/drug therapy , Spike Glycoprotein, Coronavirus/physiology , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Antiviral Agents , Binding Sites , COVID-19 , Drug Design , Evolution, Molecular , Humans , Models, Molecular , Pandemics , Protein Binding , Protein Conformation , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL